Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{3}\left(x^{2}\right)^{2}-6x^{2}x+9x^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-3x\right)^{2}.
\int _{0}^{3}x^{4}-6x^{2}x+9x^{2}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int _{0}^{3}x^{4}-6x^{3}+9x^{2}\mathrm{d}x
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\int x^{4}-6x^{3}+9x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-6\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+9\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -6 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{3x^{4}}{2}+3x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 9 times \frac{x^{3}}{3}.
3\times 3^{3}-\frac{3}{2}\times 3^{4}+\frac{3^{5}}{5}-\left(3\times 0^{3}-\frac{3}{2}\times 0^{4}+\frac{0^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{81}{10}
Simplify.