Evaluate
\frac{76132}{1875}\approx 40.603733333
Share
Copied to clipboard
\int _{0}^{2}54.38x^{2}\times \frac{7}{25}\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{2}\frac{2719}{50}x^{2}\times \frac{7}{25}\mathrm{d}x
Convert decimal number 54.38 to fraction \frac{5438}{100}. Reduce the fraction \frac{5438}{100} to lowest terms by extracting and canceling out 2.
\int _{0}^{2}\frac{2719\times 7}{50\times 25}x^{2}\mathrm{d}x
Multiply \frac{2719}{50} times \frac{7}{25} by multiplying numerator times numerator and denominator times denominator.
\int _{0}^{2}\frac{19033}{1250}x^{2}\mathrm{d}x
Do the multiplications in the fraction \frac{2719\times 7}{50\times 25}.
\int \frac{19033x^{2}}{1250}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{19033\int x^{2}\mathrm{d}x}{1250}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{19033x^{3}}{3750}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{19033}{3750}\times 2^{3}-\frac{19033}{3750}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{76132}{1875}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}