Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 6t-3t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 6t\mathrm{d}t+\int -3t^{2}\mathrm{d}t
Integrate the sum term by term.
6\int t\mathrm{d}t-3\int t^{2}\mathrm{d}t
Factor out the constant in each of the terms.
3t^{2}-3\int t^{2}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 6 times \frac{t^{2}}{2}.
3t^{2}-t^{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -3 times \frac{t^{3}}{3}.
3\times 2^{2}-2^{3}-\left(3\times 0^{2}-0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
4
Simplify.