Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{32x}{5}-\frac{16x^{2}}{25}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{32x}{5}\mathrm{d}x+\int -\frac{16x^{2}}{25}\mathrm{d}x
Integrate the sum term by term.
\frac{32\int x\mathrm{d}x}{5}-\frac{16\int x^{2}\mathrm{d}x}{25}
Factor out the constant in each of the terms.
\frac{16x^{2}}{5}-\frac{16\int x^{2}\mathrm{d}x}{25}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 6.4 times \frac{x^{2}}{2}.
\frac{16x^{2}}{5}-\frac{16x^{3}}{75}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -0.64 times \frac{x^{3}}{3}.
\frac{16}{5}\times 2^{2}-\frac{16}{75}\times 2^{3}-\left(\frac{16}{5}\times 0^{2}-\frac{16}{75}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{832}{75}
Simplify.