Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}\left(24+24x+0x^{2}\right)x\mathrm{d}x
Multiply 0 and 6 to get 0.
\int _{0}^{2}\left(24+24x+0\right)x\mathrm{d}x
Anything times zero gives zero.
\int _{0}^{2}\left(24+24x\right)x\mathrm{d}x
Add 24 and 0 to get 24.
\int _{0}^{2}24x+24x^{2}\mathrm{d}x
Use the distributive property to multiply 24+24x by x.
\int 24x+24x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 24x\mathrm{d}x+\int 24x^{2}\mathrm{d}x
Integrate the sum term by term.
24\int x\mathrm{d}x+24\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
12x^{2}+24\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 24 times \frac{x^{2}}{2}.
12x^{2}+8x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 24 times \frac{x^{3}}{3}.
12\times 2^{2}+8\times 2^{3}-\left(12\times 0^{2}+8\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
112
Simplify.