Evaluate
112
Share
Copied to clipboard
\int _{0}^{2}\left(24+24x+0x^{2}\right)x\mathrm{d}x
Multiply 0 and 6 to get 0.
\int _{0}^{2}\left(24+24x+0\right)x\mathrm{d}x
Anything times zero gives zero.
\int _{0}^{2}\left(24+24x\right)x\mathrm{d}x
Add 24 and 0 to get 24.
\int _{0}^{2}24x+24x^{2}\mathrm{d}x
Use the distributive property to multiply 24+24x by x.
\int 24x+24x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 24x\mathrm{d}x+\int 24x^{2}\mathrm{d}x
Integrate the sum term by term.
24\int x\mathrm{d}x+24\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
12x^{2}+24\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 24 times \frac{x^{2}}{2}.
12x^{2}+8x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 24 times \frac{x^{3}}{3}.
12\times 2^{2}+8\times 2^{3}-\left(12\times 0^{2}+8\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
112
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}