Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}-2.7xx\mathrm{d}x
Multiply 2.7 and -1 to get -2.7.
\int _{0}^{2}-2.7x^{2}\mathrm{d}x
Multiply x and x to get x^{2}.
\int -\frac{27x^{2}}{10}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{27\int x^{2}\mathrm{d}x}{10}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{9x^{3}}{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-\frac{9}{10}\times 2^{3}+\frac{9}{10}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{36}{5}
Simplify.