Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}1.5x^{2}\left(-\frac{1}{3}\right)\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{2}\frac{3}{2}x^{2}\left(-\frac{1}{3}\right)\mathrm{d}x
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\int _{0}^{2}\frac{3\left(-1\right)}{2\times 3}x^{2}\mathrm{d}x
Multiply \frac{3}{2} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\int _{0}^{2}\frac{-1}{2}x^{2}\mathrm{d}x
Cancel out 3 in both numerator and denominator.
\int _{0}^{2}-\frac{1}{2}x^{2}\mathrm{d}x
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\int -\frac{x^{2}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
-\frac{\int x^{2}\mathrm{d}x}{2}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{x^{3}}{6}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
-\frac{2^{3}}{6}+\frac{0^{3}}{6}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{4}{3}
Simplify.