Skip to main content
Evaluate
Tick mark Image

Share

\int _{0}^{2}\left(7\left(-x\right)-\left(-x\right)x\right)\left(-0.1\right)x\mathrm{d}x
Use the distributive property to multiply -x by 7-x.
\int _{0}^{2}\left(7\left(-x\right)+xx\right)\left(-0.1\right)x\mathrm{d}x
Multiply -1 and -1 to get 1.
\int _{0}^{2}\left(7\left(-x\right)+x^{2}\right)\left(-0.1\right)x\mathrm{d}x
Multiply x and x to get x^{2}.
\int _{0}^{2}\left(-0.7\left(-x\right)-0.1x^{2}\right)x\mathrm{d}x
Use the distributive property to multiply 7\left(-x\right)+x^{2} by -0.1.
\int _{0}^{2}\left(0.7x-0.1x^{2}\right)x\mathrm{d}x
Multiply -0.7 and -1 to get 0.7.
\int _{0}^{2}0.7x^{2}-0.1x^{3}\mathrm{d}x
Use the distributive property to multiply 0.7x-0.1x^{2} by x.
\int \frac{7x^{2}-x^{3}}{10}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{7x^{2}}{10}\mathrm{d}x+\int -\frac{x^{3}}{10}\mathrm{d}x
Integrate the sum term by term.
\frac{7\int x^{2}\mathrm{d}x-\int x^{3}\mathrm{d}x}{10}
Factor out the constant in each of the terms.
\frac{7x^{3}}{30}-\frac{\int x^{3}\mathrm{d}x}{10}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 0.7 times \frac{x^{3}}{3}.
\frac{7x^{3}}{30}-\frac{x^{4}}{40}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -0.1 times \frac{x^{4}}{4}.
\frac{7}{30}\times 2^{3}-\frac{2^{4}}{40}-\left(\frac{7}{30}\times 0^{3}-\frac{0^{4}}{40}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{22}{15}
Simplify.