Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{2}\frac{1}{2}\left(4-\frac{1}{2}x\right)\mathrm{d}x
Calculate 4-\frac{1}{2}x to the power of 1 and get 4-\frac{1}{2}x.
\int _{0}^{2}2-\frac{1}{4}x\mathrm{d}x
Use the distributive property to multiply \frac{1}{2} by 4-\frac{1}{2}x.
\int 2-\frac{x}{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 2\mathrm{d}x+\int -\frac{x}{4}\mathrm{d}x
Integrate the sum term by term.
\int 2\mathrm{d}x-\frac{\int x\mathrm{d}x}{4}
Factor out the constant in each of the terms.
2x-\frac{\int x\mathrm{d}x}{4}
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x-\frac{x^{2}}{8}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{1}{4} times \frac{x^{2}}{2}.
2\times 2-\frac{2^{2}}{8}-\left(2\times 0-\frac{0^{2}}{8}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7}{2}
Simplify.