Evaluate
378125
Share
Copied to clipboard
\int _{0}^{11}6250\left(11-y\right)\mathrm{d}y
Multiply 625 and 10 to get 6250.
\int _{0}^{11}68750-6250y\mathrm{d}y
Use the distributive property to multiply 6250 by 11-y.
\int 68750-6250y\mathrm{d}y
Evaluate the indefinite integral first.
\int 68750\mathrm{d}y+\int -6250y\mathrm{d}y
Integrate the sum term by term.
\int 68750\mathrm{d}y-6250\int y\mathrm{d}y
Factor out the constant in each of the terms.
68750y-6250\int y\mathrm{d}y
Find the integral of 68750 using the table of common integrals rule \int a\mathrm{d}y=ay.
68750y-3125y^{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -6250 times \frac{y^{2}}{2}.
68750\times 11-3125\times 11^{2}-\left(68750\times 0-3125\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
378125
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}