Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{11}6250\left(11-y\right)\mathrm{d}y
Multiply 625 and 10 to get 6250.
\int _{0}^{11}68750-6250y\mathrm{d}y
Use the distributive property to multiply 6250 by 11-y.
\int 68750-6250y\mathrm{d}y
Evaluate the indefinite integral first.
\int 68750\mathrm{d}y+\int -6250y\mathrm{d}y
Integrate the sum term by term.
\int 68750\mathrm{d}y-6250\int y\mathrm{d}y
Factor out the constant in each of the terms.
68750y-6250\int y\mathrm{d}y
Find the integral of 68750 using the table of common integrals rule \int a\mathrm{d}y=ay.
68750y-3125y^{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -6250 times \frac{y^{2}}{2}.
68750\times 11-3125\times 11^{2}-\left(68750\times 0-3125\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
378125
Simplify.