Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{11}625\left(11-y\right)\mathrm{d}y
Multiply 62.5 and 10 to get 625.
\int _{0}^{11}6875-625y\mathrm{d}y
Use the distributive property to multiply 625 by 11-y.
\int 6875-625y\mathrm{d}y
Evaluate the indefinite integral first.
\int 6875\mathrm{d}y+\int -625y\mathrm{d}y
Integrate the sum term by term.
\int 6875\mathrm{d}y-625\int y\mathrm{d}y
Factor out the constant in each of the terms.
6875y-625\int y\mathrm{d}y
Find the integral of 6875 using the table of common integrals rule \int a\mathrm{d}y=ay.
6875y-\frac{625y^{2}}{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply -625 times \frac{y^{2}}{2}.
6875\times 11-\frac{625}{2}\times 11^{2}-\left(6875\times 0-\frac{625}{2}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{75625}{2}
Simplify.