Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x_4
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x}{e^{x_{4}}}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{\int x\mathrm{d}x}{e^{x_{4}}}
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{2}}{2e^{x_{4}}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{1}{2}e^{-x_{4}}\times 1^{2}-\frac{1}{2}e^{-x_{4}}\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2e^{x_{4}}}
Simplify.