Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 3x^{2}+3x+\sin(x)\mathrm{d}x
Evaluate the indefinite integral first.
\int 3x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int \sin(x)\mathrm{d}x
Integrate the sum term by term.
3\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int \sin(x)\mathrm{d}x
Factor out the constant in each of the terms.
x^{3}+3\int x\mathrm{d}x+\int \sin(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 3 times \frac{x^{3}}{3}.
x^{3}+\frac{3x^{2}}{2}+\int \sin(x)\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
x^{3}+\frac{3x^{2}}{2}-\cos(x)
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
1^{3}+\frac{3}{2}\times 1^{2}-\cos(1)-\left(0^{3}+\frac{3}{2}\times 0^{2}-\cos(0)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{2}\left(7-2\cos(1)\right)
Simplify.