Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 1000\times 8^{t}\mathrm{d}t
Evaluate the indefinite integral first.
1000\int 8^{t}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
\frac{8^{t}}{\ln(8)}
Use \int t^{a}\mathrm{d}a=\frac{t^{a}}{\ln(t)} from the table of common integrals to obtain the result.
\frac{1000\times \frac{8^{t}}{\ln(2)}}{3}
Simplify.
\frac{1000\times 8^{t}}{3\ln(2)}
Simplify.
\frac{1000}{3}\times 8^{1}\ln(2)^{-1}-\frac{1000}{3}\times 8^{0}\ln(2)^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{7000}{3\ln(2)}
Simplify.