Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}\left(0.05-x\right)\times 1\mathrm{d}x
Divide 1 by 1 to get 1.
\int _{0}^{1}0.05-x\mathrm{d}x
Use the distributive property to multiply 0.05-x by 1.
\int 0.05-x\mathrm{d}x
Evaluate the indefinite integral first.
\int 0.05\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int 0.05\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x}{20}-\int x\mathrm{d}x
Find the integral of 0.05 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x}{20}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
0.05\times 1-\frac{1^{2}}{2}-\left(0.05\times 0-\frac{0^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{9}{20}
Simplify.