Evaluate
e = \frac{3}{2} = 1\frac{1}{2} \approx 1.218281828
Share
Copied to clipboard
\int _{0}^{1}e^{x}-\left(-x\right)-1\mathrm{d}x
To find the opposite of -x+1, find the opposite of each term.
\int _{0}^{1}e^{x}+x-1\mathrm{d}x
Multiply -1 and -1 to get 1.
\int e^{x}+x-1\mathrm{d}x
Evaluate the indefinite integral first.
\int e^{x}\mathrm{d}x+\int x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
e^{x}+\int x\mathrm{d}x+\int -1\mathrm{d}x
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
e^{x}+\frac{x^{2}}{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
e^{x}+\frac{x^{2}}{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
e^{1}+\frac{1^{2}}{2}-1-\left(e^{0}+\frac{0^{2}}{2}-0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
e-\frac{3}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}