Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}e^{x}-\left(-x\right)-1\mathrm{d}x
To find the opposite of -x+1, find the opposite of each term.
\int _{0}^{1}e^{x}+x-1\mathrm{d}x
Multiply -1 and -1 to get 1.
\int e^{x}+x-1\mathrm{d}x
Evaluate the indefinite integral first.
\int e^{x}\mathrm{d}x+\int x\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
e^{x}+\int x\mathrm{d}x+\int -1\mathrm{d}x
Use \int e^{x}\mathrm{d}x=e^{x} from the table of common integrals to obtain the result.
e^{x}+\frac{x^{2}}{2}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
e^{x}+\frac{x^{2}}{2}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
e^{1}+\frac{1^{2}}{2}-1-\left(e^{0}+\frac{0^{2}}{2}-0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
e-\frac{3}{2}
Simplify.