Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int y^{2}e^{2}\mathrm{d}y
Evaluate the indefinite integral first.
e^{2}\int y^{2}\mathrm{d}y
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
e^{2}\times \frac{y^{3}}{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}.
\frac{e^{2}y^{3}}{3}
Simplify.
\frac{1}{3}e^{2}\times 1^{3}-\frac{1}{3}e^{2}\times 0^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{e^{2}}{3}
Simplify.