Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}-\frac{\sqrt{x}}{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -\frac{\sqrt{x}}{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-\frac{\int \sqrt{x}\mathrm{d}x}{2}
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-\frac{\int \sqrt{x}\mathrm{d}x}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}-x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply -\frac{1}{2} times \frac{2x^{\frac{3}{2}}}{3}.
\frac{1^{3}}{3}-\frac{1^{\frac{3}{2}}}{3}-\left(\frac{0^{3}}{3}-\frac{0^{\frac{3}{2}}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
0
Simplify.