Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{2}\left(x^{2}-8x+16\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
\int _{0}^{1}x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by x^{2}-8x+16.
\int x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+16\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -8 times \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{16x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 16 times \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-2x^{4}+\frac{x^{5}}{5}
Simplify.
\frac{16}{3}\times 1^{3}-2\times 1^{4}+\frac{1^{5}}{5}-\left(\frac{16}{3}\times 0^{3}-2\times 0^{4}+\frac{0^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{53}{15}
Simplify.