Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}x^{2}\left(1-2x+x^{2}\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
\int _{0}^{1}x^{2}-2x^{3}+x^{4}\mathrm{d}x
Use the distributive property to multiply x^{2} by 1-2x+x^{2}.
\int x^{2}-2x^{3}+x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x^{4}\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-2\int x^{3}\mathrm{d}x+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{x^{4}}{2}+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -2 times \frac{x^{4}}{4}.
\frac{x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{1^{5}}{5}-\frac{1^{4}}{2}+\frac{1^{3}}{3}-\left(\frac{0^{5}}{5}-\frac{0^{4}}{2}+\frac{0^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{30}
Simplify.