Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 1.124^{x}\mathrm{d}x
Evaluate the indefinite integral first.
\frac{1.124^{x}}{\ln(1.124)}
Use \int x^{y}\mathrm{d}y=\frac{x^{y}}{\ln(x)} from the table of common integrals to obtain the result.
\frac{1.124^{x}}{\ln(\frac{281}{250})}
Simplify.
1.124^{1}\left(\ln(281)-\ln(250)\right)^{-1}-1.124^{0}\left(\ln(281)-\ln(250)\right)^{-1}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{31}{250\ln(\frac{281}{250})}
Simplify.