Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{1}1-2\sqrt{x}+\left(\sqrt{x}\right)^{2}\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{x}\right)^{2}.
\int _{0}^{1}1-2\sqrt{x}+x\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int 1-2\sqrt{x}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int 1\mathrm{d}x+\int -2\sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\int 1\mathrm{d}x-2\int \sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
Factor out the constant in each of the terms.
x-2\int \sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
x-\frac{4x^{\frac{3}{2}}}{3}+\int x\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply -2 times \frac{2x^{\frac{3}{2}}}{3}.
x-\frac{4x^{\frac{3}{2}}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\frac{4x^{\frac{3}{2}}}{3}+x
Simplify.
\frac{1^{2}}{2}-\frac{4}{3}\times 1^{\frac{3}{2}}+1-\left(\frac{0^{2}}{2}-\frac{4}{3}\times 0^{\frac{3}{2}}+0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{1}{6}
Simplify.