Evaluate
2.75
Share
Copied to clipboard
\int 12t^{2}-30t+12\mathrm{d}t
Evaluate the indefinite integral first.
\int 12t^{2}\mathrm{d}t+\int -30t\mathrm{d}t+\int 12\mathrm{d}t
Integrate the sum term by term.
12\int t^{2}\mathrm{d}t-30\int t\mathrm{d}t+\int 12\mathrm{d}t
Factor out the constant in each of the terms.
4t^{3}-30\int t\mathrm{d}t+\int 12\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 12 times \frac{t^{3}}{3}.
4t^{3}-15t^{2}+\int 12\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply -30 times \frac{t^{2}}{2}.
4t^{3}-15t^{2}+12t
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}t=at.
4\times 0.5^{3}-15\times 0.5^{2}+12\times 0.5-\left(4\times 0^{3}-15\times 0^{2}+12\times 0\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
2.75
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}