Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{0}^{0.00375}500-\frac{4}{3}\times 100000x\mathrm{d}x
Calculate 10 to the power of 5 and get 100000.
\int _{0}^{0.00375}500-\frac{4\times 100000}{3}x\mathrm{d}x
Express \frac{4}{3}\times 100000 as a single fraction.
\int _{0}^{0.00375}500-\frac{400000}{3}x\mathrm{d}x
Multiply 4 and 100000 to get 400000.
\int 500-\frac{400000x}{3}\mathrm{d}x
Evaluate the indefinite integral first.
\int 500\mathrm{d}x+\int -\frac{400000x}{3}\mathrm{d}x
Integrate the sum term by term.
\int 500\mathrm{d}x-\frac{400000\int x\mathrm{d}x}{3}
Factor out the constant in each of the terms.
500x-\frac{400000\int x\mathrm{d}x}{3}
Find the integral of 500 using the table of common integrals rule \int a\mathrm{d}x=ax.
500x-\frac{200000x^{2}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{400000}{3} times \frac{x^{2}}{2}.
500\times 0.00375-\frac{200000}{3}\times 0.00375^{2}-\left(500\times 0-\frac{200000}{3}\times 0^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{15}{16}
Simplify.