Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{2x^{3}}\mathrm{d}x
Evaluate the indefinite integral first.
\sqrt{2}\int \sqrt{x^{3}}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{2}\times \frac{2x^{\frac{5}{2}}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{3}{2}}\mathrm{d}x with \frac{2x^{\frac{5}{2}}}{5}.
\frac{2\sqrt{2}x^{\frac{5}{2}}}{5}
Simplify.
\frac{2}{5}\times 2^{\frac{1}{2}}\pi ^{\frac{5}{2}}-\frac{2}{5}\times 2^{\frac{1}{2}}\times 0^{\frac{5}{2}}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\left(2\pi \right)^{\frac{5}{2}}}{10}
Simplify.