Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{x^{2}y}{3}\mathrm{d}y
Evaluate the indefinite integral first.
\frac{x^{2}}{3}\int y\mathrm{d}y
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
\frac{x^{2}}{3}\times \frac{y^{2}}{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}.
\frac{x^{2}y^{2}}{6}
Simplify.
\frac{1}{6}x^{2}\times \left(\frac{1}{4}\right)^{2}-\frac{1}{6}x^{2}\times 0^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{x^{2}}{96}
Simplify.