Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 9x^{3}-x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int 9x^{3}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Integrate the sum term by term.
9\int x^{3}\mathrm{d}x-\int x^{4}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{9x^{4}}{4}-\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 9 times \frac{x^{4}}{4}.
\frac{9x^{4}}{4}-\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply -1 times \frac{x^{5}}{5}.
\frac{9}{4}\times 5^{4}-\frac{5^{5}}{5}-\left(\frac{9}{4}\left(-5\right)^{4}-\frac{\left(-5\right)^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-1250
Simplify.