Evaluate
54
Share
Copied to clipboard
\int 12-x-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 12\mathrm{d}x+\int -x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int 12\mathrm{d}x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
12x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
12x-\frac{x^{2}}{2}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
12x-\frac{x^{2}}{2}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
12\times 2-\frac{2^{2}}{2}-\frac{2^{3}}{3}-\left(12\left(-4\right)-\frac{\left(-4\right)^{2}}{2}-\frac{\left(-4\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
54
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}