Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-4}^{2}2^{2}x^{2}+4x-16\mathrm{d}x
Expand \left(2x\right)^{2}.
\int _{-4}^{2}4x^{2}+4x-16\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int 4x^{2}+4x-16\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{2}\mathrm{d}x+\int 4x\mathrm{d}x+\int -16\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x+4\int x\mathrm{d}x+\int -16\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}+4\int x\mathrm{d}x+\int -16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}+2x^{2}+\int -16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
\frac{4x^{3}}{3}+2x^{2}-16x
Find the integral of -16 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{4}{3}\times 2^{3}+2\times 2^{2}-16\times 2-\left(\frac{4}{3}\left(-4\right)^{3}+2\left(-4\right)^{2}-16\left(-4\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-24
Simplify.