Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{3}-x-12\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{3}\mathrm{d}x+\int -x\mathrm{d}x+\int -12\mathrm{d}x
Integrate the sum term by term.
-\int x^{3}\mathrm{d}x-\int x\mathrm{d}x+\int -12\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{4}}{4}-\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
-\frac{x^{4}}{4}-\frac{x^{2}}{2}+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
-\frac{x^{4}}{4}-\frac{x^{2}}{2}-12x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{1^{4}}{4}-\frac{1^{2}}{2}-12-\left(-\frac{\left(-4\right)^{4}}{4}-\frac{\left(-4\right)^{2}}{2}-12\left(-4\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{45}{4}
Simplify.