Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-3}^{4}x-\left(x^{2}-x-12\right)\mathrm{d}x
Calculate x to the power of 1 and get x.
\int _{-3}^{4}x-x^{2}+x+12\mathrm{d}x
To find the opposite of x^{2}-x-12, find the opposite of each term.
\int _{-3}^{4}2x-x^{2}+12\mathrm{d}x
Combine x and x to get 2x.
\int 2x-x^{2}+12\mathrm{d}x
Evaluate the indefinite integral first.
\int 2x\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 12\mathrm{d}x
Integrate the sum term by term.
2\int x\mathrm{d}x-\int x^{2}\mathrm{d}x+\int 12\mathrm{d}x
Factor out the constant in each of the terms.
x^{2}-\int x^{2}\mathrm{d}x+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
x^{2}-\frac{x^{3}}{3}+\int 12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
x^{2}-\frac{x^{3}}{3}+12x
Find the integral of 12 using the table of common integrals rule \int a\mathrm{d}x=ax.
4^{2}-\frac{4^{3}}{3}+12\times 4-\left(\left(-3\right)^{2}-\frac{\left(-3\right)^{3}}{3}+12\left(-3\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{182}{3}
Simplify.