Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 8x^{3}-2x\mathrm{d}x
Evaluate the indefinite integral first.
\int 8x^{3}\mathrm{d}x+\int -2x\mathrm{d}x
Integrate the sum term by term.
8\int x^{3}\mathrm{d}x-2\int x\mathrm{d}x
Factor out the constant in each of the terms.
2x^{4}-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 8 times \frac{x^{4}}{4}.
2x^{4}-x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
2\times 5^{4}-5^{2}-\left(2\left(-2\right)^{4}-\left(-2\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
1197
Simplify.