Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+3x-4-4x+2\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -4\mathrm{d}x+\int -4x\mathrm{d}x+\int 2\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x+\int -4\mathrm{d}x-4\int x\mathrm{d}x+\int 2\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}+3\int x\mathrm{d}x+\int -4\mathrm{d}x-4\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}+\int -4\mathrm{d}x-4\int x\mathrm{d}x+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 3 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}-4x-4\int x\mathrm{d}x+\int 2\mathrm{d}x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}-4x-2x^{2}+\int 2\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}+\frac{3x^{2}}{2}-4x-2x^{2}+2x
Find the integral of 2 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x
Simplify.
\frac{3^{3}}{3}-\frac{3^{2}}{2}-2\times 3-\left(\frac{\left(-2\right)^{3}}{3}-\frac{\left(-2\right)^{2}}{2}-2\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{5}{6}
Simplify.