Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 2y^{2}+4y\mathrm{d}y
Evaluate the indefinite integral first.
\int 2y^{2}\mathrm{d}y+\int 4y\mathrm{d}y
Integrate the sum term by term.
2\int y^{2}\mathrm{d}y+4\int y\mathrm{d}y
Factor out the constant in each of the terms.
\frac{2y^{3}}{3}+4\int y\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply 2 times \frac{y^{3}}{3}.
\frac{2y^{3}}{3}+2y^{2}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y\mathrm{d}y with \frac{y^{2}}{2}. Multiply 4 times \frac{y^{2}}{2}.
\frac{2}{3}\times 2^{3}+2\times 2^{2}-\left(\frac{2}{3}\left(-2\right)^{3}+2\left(-2\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{32}{3}
Simplify.