Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{4}-\frac{15x^{2}}{4}-1\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{4}\mathrm{d}x+\int -\frac{15x^{2}}{4}\mathrm{d}x+\int -1\mathrm{d}x
Integrate the sum term by term.
\int x^{4}\mathrm{d}x-\frac{15\int x^{2}\mathrm{d}x}{4}+\int -1\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{5}}{5}-\frac{15\int x^{2}\mathrm{d}x}{4}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{5x^{3}}{4}+\int -1\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3.75 times \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{5x^{3}}{4}-x
Find the integral of -1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{5}}{5}-\frac{5}{4}\times 2^{3}-2-\left(\frac{\left(-2\right)^{5}}{5}-\frac{5}{4}\left(-2\right)^{3}-\left(-2\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{56}{5}
Simplify.