Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{3}+4x\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{3}\mathrm{d}x+\int 4x\mathrm{d}x
Integrate the sum term by term.
-\int x^{3}\mathrm{d}x+4\int x\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{4}}{4}+4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
-\frac{x^{4}}{4}+2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
-\frac{0^{4}}{4}+2\times 0^{2}-\left(-\frac{\left(-2\right)^{4}}{4}+2\left(-2\right)^{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-4
Simplify.