Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{x^{2}}-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int \frac{1}{x^{2}}\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x^{2}}\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{1}{x}-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
-\frac{1}{x}-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
-\left(-1\right)^{-1}-\frac{\left(-1\right)^{3}}{3}-\left(-\left(-2\right)^{-1}-\frac{\left(-2\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{11}{6}
Simplify.