Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{-1}^{7}2x+5-x^{2}+2x\mathrm{d}x
To find the opposite of x^{2}-2x, find the opposite of each term.
\int _{-1}^{7}4x+5-x^{2}\mathrm{d}x
Combine 2x and 2x to get 4x.
\int 4x+5-x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x\mathrm{d}x+\int 5\mathrm{d}x+\int -x^{2}\mathrm{d}x
Integrate the sum term by term.
4\int x\mathrm{d}x+\int 5\mathrm{d}x-\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{2}+\int 5\mathrm{d}x-\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 4 times \frac{x^{2}}{2}.
2x^{2}+5x-\int x^{2}\mathrm{d}x
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x^{2}+5x-\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -1 times \frac{x^{3}}{3}.
2\times 7^{2}+5\times 7-\frac{7^{3}}{3}-\left(2\left(-1\right)^{2}+5\left(-1\right)-\frac{\left(-1\right)^{3}}{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{64}{3}
Simplify.