Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int -x^{3}+8x^{2}+2x-\frac{13}{5}\mathrm{d}x
Evaluate the indefinite integral first.
\int -x^{3}\mathrm{d}x+\int 8x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -\frac{13}{5}\mathrm{d}x
Integrate the sum term by term.
-\int x^{3}\mathrm{d}x+8\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -\frac{13}{5}\mathrm{d}x
Factor out the constant in each of the terms.
-\frac{x^{4}}{4}+8\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -\frac{13}{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
-\frac{x^{4}}{4}+\frac{8x^{3}}{3}+2\int x\mathrm{d}x+\int -\frac{13}{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 8 times \frac{x^{3}}{3}.
-\frac{x^{4}}{4}+\frac{8x^{3}}{3}+x^{2}+\int -\frac{13}{5}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
-\frac{x^{4}}{4}+\frac{8x^{3}}{3}+x^{2}-\frac{13x}{5}
Find the integral of -\frac{13}{5} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{3^{4}}{4}+\frac{8}{3}\times 3^{3}+3^{2}-\frac{13}{5}\times 3-\left(-\frac{\left(-1\right)^{4}}{4}+\frac{8}{3}\left(-1\right)^{3}+\left(-1\right)^{2}-\frac{13}{5}\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{784}{15}
Simplify.