Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-3x^{2}-4\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -3x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-3\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-3\int x^{2}\mathrm{d}x+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-x^{3}+\int -4\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -3 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}-x^{3}-4x
Find the integral of -4 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2^{4}}{4}-2^{3}-4\times 2-\left(\frac{\left(-1\right)^{4}}{4}-\left(-1\right)^{3}-4\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{69}{4}
Simplify.