Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int v^{2}-v\mathrm{d}v
Evaluate the indefinite integral first.
\int v^{2}\mathrm{d}v+\int -v\mathrm{d}v
Integrate the sum term by term.
\int v^{2}\mathrm{d}v-\int v\mathrm{d}v
Factor out the constant in each of the terms.
\frac{v^{3}}{3}-\int v\mathrm{d}v
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v^{2}\mathrm{d}v with \frac{v^{3}}{3}.
\frac{v^{3}}{3}-\frac{v^{2}}{2}
Since \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} for k\neq -1, replace \int v\mathrm{d}v with \frac{v^{2}}{2}. Multiply -1 times \frac{v^{2}}{2}.
\frac{2^{3}}{3}-\frac{2^{2}}{2}-\left(\frac{\left(-1\right)^{3}}{3}-\frac{\left(-1\right)^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3}{2}
Simplify.