Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}-3x+5\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{3}\mathrm{d}x+\int -3x\mathrm{d}x+\int 5\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 5\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}-3\int x\mathrm{d}x+\int 5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{3x^{2}}{2}+\int 5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
\frac{x^{4}}{4}-\frac{3x^{2}}{2}+5x
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{0^{4}}{4}-\frac{3}{2}\times 0^{2}+5\times 0-\left(\frac{\left(-1\right)^{4}}{4}-\frac{3}{2}\left(-1\right)^{2}+5\left(-1\right)\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{25}{4}
Simplify.