Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x+1-2x^{2}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int 1\mathrm{d}x+\int -2x^{2}\mathrm{d}x
Integrate the sum term by term.
\int x\mathrm{d}x+\int 1\mathrm{d}x-2\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{2}}{2}+\int 1\mathrm{d}x-2\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+x-2\int x^{2}\mathrm{d}x
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}+x-\frac{2x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -2 times \frac{x^{3}}{3}.
\frac{1^{2}}{2}+1-\frac{2}{3}\times 1^{3}-\left(\frac{\left(-0.5\right)^{2}}{2}-0.5-\frac{2}{3}\left(-0.5\right)^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{9}{8}
Simplify.