Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x\log_{e}\left(5\right)\mathrm{d}x
Evaluate the indefinite integral first.
\log_{e}\left(5\right)\int x\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\log_{e}\left(5\right)\times \frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{\ln(5)x^{2}}{2}
Simplify.
\frac{1}{2}\ln(5)\times 7^{2}-\frac{1}{2}\ln(5)\times \left(\frac{1}{5}\right)^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{612\ln(5)}{25}
Simplify.