Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 3\left(4\left(x^{2}\right)^{2}-4x^{2}+1\right)\mathrm{d}x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x^{2}-1\right)^{2}.
\int 3\left(4x^{4}-4x^{2}+1\right)\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 12x^{4}-12x^{2}+3\mathrm{d}x
Use the distributive property to multiply 3 by 4x^{4}-4x^{2}+1.
\int 12x^{4}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
12\int x^{4}\mathrm{d}x-12\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{12x^{5}}{5}-12\int x^{2}\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 12 times \frac{x^{5}}{5}.
\frac{12x^{5}}{5}-4x^{3}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -12 times \frac{x^{3}}{3}.
\frac{12x^{5}}{5}-4x^{3}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{12x^{5}}{5}-4x^{3}+3x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.