Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

3\int 2^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
3\times \frac{2^{x}}{\ln(2)}
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
\frac{3\times 2^{x}}{\ln(2)}
Simplify.
\frac{3\times 2^{x}}{\ln(2)}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.