Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int 3\sqrt{x}\mathrm{d}x+\int -\frac{2x^{\frac{2}{3}}}{5}\mathrm{d}x+\int 5^{\frac{3}{5}}\mathrm{d}x
Integrate the sum term by term.
3\int \sqrt{x}\mathrm{d}x-\frac{2\int x^{\frac{2}{3}}\mathrm{d}x}{5}+\int 5^{\frac{3}{5}}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{\frac{3}{2}}-\frac{2\int x^{\frac{2}{3}}\mathrm{d}x}{5}+\int 5^{\frac{3}{5}}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 3 times \frac{2x^{\frac{3}{2}}}{3}.
2x^{\frac{3}{2}}-\frac{6x^{\frac{5}{3}}}{25}+\int 5^{\frac{3}{5}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{2}{3}}\mathrm{d}x with \frac{3x^{\frac{5}{3}}}{5}. Multiply -\frac{2}{5} times \frac{3x^{\frac{5}{3}}}{5}.
2x^{\frac{3}{2}}-\frac{6x^{\frac{5}{3}}}{25}+5^{\frac{3}{5}}x
Find the integral of 5^{\frac{3}{5}} using the table of common integrals rule \int a\mathrm{d}x=ax.
2x^{\frac{3}{2}}-\frac{6x^{\frac{5}{3}}}{25}+5^{\frac{3}{5}}x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.