Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int 225\tan(0x-1557)+665\mathrm{d}x
Multiply 0 and 47 to get 0.
\int 225\tan(0-1557)+665\mathrm{d}x
Anything times zero gives zero.
\int 225\tan(-1557)+665\mathrm{d}x
Subtract 1557 from 0 to get -1557.
\left(\frac{225\sin(-1557)}{\cos(-1557)}+665\right)x
Find the integral of \frac{225\sin(-1557)}{\cos(-1557)}+665 using the table of common integrals rule \int a\mathrm{d}x=ax.
\left(-\frac{225\sin(1557)}{\cos(1557)}+665\right)x
Simplify.
\left(-\frac{225\sin(1557)}{\cos(1557)}+665\right)x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.