Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

2\int 1.07^{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{1.07^{x}}{\ln(1.07)}
Use \int p^{q}\mathrm{d}q=\frac{p^{q}}{\ln(p)} from the table of common integrals to obtain the result.
2\times \frac{1.07^{x}}{\ln(\frac{107}{100})}
Simplify.
\frac{2\times 1.07^{x}}{\ln(\frac{107}{100})}
Simplify.
\frac{2\times 1.07^{x}}{\ln(\frac{107}{100})}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.