Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 1-\frac{1}{75}+\left(\frac{65}{309}\right)^{2}\mathrm{d}x
Reduce the fraction \frac{2}{150} to lowest terms by extracting and canceling out 2.
\int \frac{75}{75}-\frac{1}{75}+\left(\frac{65}{309}\right)^{2}\mathrm{d}x
Convert 1 to fraction \frac{75}{75}.
\int \frac{75-1}{75}+\left(\frac{65}{309}\right)^{2}\mathrm{d}x
Since \frac{75}{75} and \frac{1}{75} have the same denominator, subtract them by subtracting their numerators.
\int \frac{74}{75}+\left(\frac{65}{309}\right)^{2}\mathrm{d}x
Subtract 1 from 75 to get 74.
\int \frac{74}{75}+\frac{4225}{95481}\mathrm{d}x
Calculate \frac{65}{309} to the power of 2 and get \frac{4225}{95481}.
\int \frac{2355198}{2387025}+\frac{105625}{2387025}\mathrm{d}x
Least common multiple of 75 and 95481 is 2387025. Convert \frac{74}{75} and \frac{4225}{95481} to fractions with denominator 2387025.
\int \frac{2355198+105625}{2387025}\mathrm{d}x
Since \frac{2355198}{2387025} and \frac{105625}{2387025} have the same denominator, add them by adding their numerators.
\int \frac{2460823}{2387025}\mathrm{d}x
Add 2355198 and 105625 to get 2460823.
\frac{2460823x}{2387025}
Find the integral of \frac{2460823}{2387025} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{2460823x}{2387025}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.